

You are what you eat! Targeting Cholesterol Metabolism as a Liability in clear cell Renal Cell Carcinoma (ccRCC)

Romain RISCAL, Ph.D

11-23-2023

Perelman School of Medicine – University of Pennsylvania – Philadelphia, USA

Kidney Cancer at a Glance

- Clear Cell Renal Cell Carcinoma (ccRCC) is the predominant subtypes of Kidney cancer.

- <u>Clear cell renal cell carcinoma (ccRCC: 70-75%)</u>
- Papillary (10%)
- Chromophobe (5%)
- Cystic-solid (1-4%)
- Collecting ducts (1%)
- Medullary (<1%)
- Xp11 translocation (<1%)
- Mucinous tubular and spindle cell (<1%)
- Associated with neuroblastoma (<1%)
- Non-classified (4-6%).

- **ccRCC genetic alteration (>90%)**: 3p deletion or translocation (*VHL*), leading to HIF stabilization.

- ccRCC morphology: "clear cell" due to lipids and glycogen accumulation.

Normal Tissue

ccRCC

Deregulated Metabolism: Hallmark of ccRCC

Bo Li et al., Nature. 2014

Khare et al., Cancer & Metabolism. 2021

Bo Qiu et al., Cancer Discovery. 2015

- Roles: sources of lipids, energy storage, avoid toxicity...
- High Cholesterol (3-8x) and Cholesterol Ester (20/100x) levels.

Zhang et al., JCI. 2017

Does excess cholesterol contribute to ccRCC?

Beatrice the Biologist

Re-activation of the Bile Acid Pathway Confers Growth Advantages to ccRCC Exogenous Cholesterol is Essential to Mediate ccRCC Cells Proliferation in vitro

A498

Riscal R. et al., Cancer Discovery. 2021

Normal Kidney Cells are not Affected by Exogenous Lipid Deprivation

Riscal R. et al., Cancer Discovery. 2021

CHOL:

No

High

Cholesterol

100-

50 -

0

പറ

No

Cholesterol

High

Cholesterol

How ccRCC cells end up loaded with high cholesterol content

Gene involved in Cholesterol uptake

Gene	Gene expression changes tumor vs normal tissue	in p-adj
SCARB1	16.80653	4.66E-208
LDLR	-2.39152	9.65E-14
VLDLR	1.55408	4.29E-11
CD36	2.16743	3.87E-44

SCARB1

N : Normal kidney tissue T : ccRCC tissue

- Mainly expressed in the liver for Reverse Cholesterol Transport (RCT)
- Uptake of Cholesterol Ester from HDL
- Cholesterol efflux
- Involved in viral infection (HBV & COVID19)

Riscal R. et al., Cancer Discovery. 2021

Targeting SCARB1 impairs Tumor Growth in vivo

Riscal R. et al., Cancer Discovery. 2021

Targeting SCARB1 impairs Tumor Growth in vivo

Riscal R. et al., Cancer Discovery. 2021

ccRCC PDXs

Unpublished data – do not post

Bile Acid Linked with ccRCC Patients

Metabolite	δ _H ppm ^a (multiplicity)	% variation (±uncertainty)	ES (±ES _{SE})	p-value		
Metabolite variations in controls > 60 yr (n = 29) vs. controls \leq 60 yr (n = 20)						
2-KG ^b	2.45 (t)	74.3 (6.1)	2.08 (0.52)	1.47×10^{-12}		
2-Ру	8.33 (s)	32.3 (12.2)	0.54 (0.43)	8.15×10^{-3}		
3-methylhistidine ^b	8.11 (s)	4.9 (13.3)	0.08 (0.42)			
3-HIBA ^b	1.36 (s)	4.7 (5.6)	0.18 (0.42)			
3-HIVA	2.37 (s)	3.0 (5.1)	0.13 (0.42)			
4-DTA	1.24 (d)	-19.9 (11.0)	-0.41 (0.43)			
4-hydroxyhippurate	7.76 (d)	-51.3 (11.3)	-1.17 (0.45)	2.95×10^{-9}		
4-hydroxyphenylacetate ^b	6.88 (d)	-13.9 (6.6)	-0.47 (0.32)	$5.09 imes 10^{-3}$		
Acetate	1.93 (s)	-63.2 (37.2)	-0.45 (0.43)			
Acetone	2.24 (s)	-6.6 (7.7)	-0.21 (0.42)	$1.54 imes 10^{-4}$		
Allantoin ^c	5.40 (s)	6.4 (7.2)	0.19 (0.42)			
Ascorbate	4.53 (d)	-14.4 (7.0)	-0.47 (0.43)			
Bile acid†	0.54 (s)	75.5 (13.7)	0.92 (0.44)	5.51×10^{-6}		
Bile acid†	0.57 (s)	101.0 (15.2)	1.04 (0.45)	1.61×10^{-7}		

Monteiro et al., Scientific reports, 2016

Primary Bile Acids Biosynthesis

Hakimi et al., Cancer Cell, 2016

HSD3B7, a Promising Target in ccRCC

HSD3B7, a Promising Target in ccRCC

Riscal et al. in Revision

HSD3B7 Knock Down Lead to 7α -OHC Accumulation

HSD3B7 Knock Down Lead to 7α -OHC Accumulation

0.1

HSD3B7 Knock Down Lead to 7α -OHC Accumulation

Riscal et al. in Revision

Cholesterol

7α-OHC Accumulation Induces ccRCC Cell Death

A498 Inflammation & Metabolic O CTR HSD3B7 intermediates Immunity 25 --bile acid and cytochrome Suppression of autoxidation % Annexin V + Cells ⁵ 0 ¹ ¹ steroid hormone -macrophage inflammatory P450 functions via LXR syntheses Oxysterols -T-cell proliferation *** -IgA class switching *** P Signaling, Induction of -cytokine expression development and -lymphocyte migration differentiation DMSO 7α-OHC 7α-25 OHC 7α-27 OHC -Hedgehog signaling -ROR liganding Sterol transport -modulation of estrogen -cellular sterol efflux receptor signaling -CNS sterol balance A498 -signaling via OSBP/ORPs Cytotoxic & DMSO 7α-OHC pro-apoptotic Transcriptional control PARP activities of metabolism -interference with lipid rafts -LXR liganding p53 -ROS levels -SREBP regulation via Insig γ-Η2ΑΧ -death receptor pathway -ROR liganding -protein kinases CC3 -mitochondrial control GAPDH -Bcl-2 family members -caspases Total -inhibitors of apoptosis

Cholesterol

Natural Library Inhibitor Screening Reveals Celastrol as a Potent HSD3B7 Inhibitor

Take Home Message

M. Celeste Simon Brian Keith

Nicole Anderson Michelle Burrows Madeleine Carens Nathan Coffey Xu Han Christine Yang Nicholas Lesner Graham Lobel Bailey Nance Laura Kim Nicolas Skuli Fran Tucker Rico Tucker

Blair Lab Clementina Mesaros Jimmy Xu

Marmorstein Lab

Sarah Gardner Austin Vogt

John Tobias

Vincent Lab

Emma Vincent Caroline Bull

Damon Runyon **Cancer Research** Foundation