

johannes.meiser@lih.lu

Formate is essential for nucleotide synthesis (anabolism) <u>and</u> has non-anabolic functions

Anabolic function of formate

Meiser et al., *Science Adv.*, 2016 Meiser et al., *Nature Com.* 2018 Ternes et al., *Nature Metab.* 2022 Kiweler et al., *Nature Com.* 2022 Delbrouck et al, *Cell Reports* 2023

Formate overflow

Systemic formate concentrations are balanced by inter-organ metabolism

Pietzke et al., Mol. Met. 2019

Diet:

Meiser et al., Nature Com 2018

1C metabolism is compartmentalised

Formate overflow depends on mitochondrial one-carbon metabolism and can not be compensated by cytosolic 1C flux

Loss of mitochondrial 1C flux prevents formate overflow but does not affect proliferation

Meiser et al., *Science Adv.* 2016 Meiser et al., *Nature Com* 2018 Kiweler et al., *Nature Com*. 2022

Can we exploit or target formate overflow?

TH9619 targets cytosolic MTHFD1 and nuclear MTHFD2

Thomas Helleday, Karolinska Institute Sweden

TH9619 has a unique mode of action

Hypoxanthine exacerbates TH9619 efficacy

Hypoxanthine exacerbates TH9619 efficacy in WT cells but not MTHFD2^{-/-} cells

High Hypoxanthine flux inhibits *de novo* purine synthesis

Hypoxanthine promotes 10-CHO-THF accumulation

Does TH9619 mode of action depend on formate overflow?

High mitochondrial formate flux is required to induce cytosolic folate trapping

High mitochondrial formate flux is required to induce cytosolic folate trapping

Formate overflow drives toxic folate trapping in MTHFD1 inhibited cancer cells

Green*, Marttila*, Kiweler* et al., Nature Metabolism 2023

DEPARTMENT OF CANCER RESEARCH **DOCR**

Cancer Metabolism Group @LIH

External Funding Sources

Johannes Meiser, PhD	(FNR-
Bjoern Becker, Phd	(BMB
Oleg Chen, PhD	(FNR-
Nicole Kiweler, PhD	(DFG a
Gautham Srinivasan, Msc	(FNR-
Christina Kroetz, Msc	(FNR-
Lara Haase, Msc	(FNR-
Kim Eiden, Msc	(FNR -
Laura Neises, Msc	(FNR-

Mass Spec platform @LIH: Nathalie LeGrave, PhD Francois Bernardin, Msc

(FNR-Attract)
(BMBF-INTER, FNR CORE Junior)
(FNR-CORE)
(DFG and EACR fellowships)
Msc (FNR-CANBIO2)
(FNR-CORE Junior)
(FNR-NextImmune)
(FNR - i2TRON)
(FNR-CORE + DFG-INTER)

Collaborators:

Thomas Helleday, Karolinska Institute, Sweden Elisabeth Letellier, University of Luxembourg Jerome Paggetti, Etienne Moussay, LIH, Luxembourg

<u>Helleday lab</u> Alanna Green Petra Marttila Martin Henriksson

Postdoc positions available!

Fonds National de la <mark>Recherche</mark> Luxembourg

Cambridge Isotope Laboratories

TH9619 targets cytosolic MTHFD1 Thomas Helleday, Karolinska Institute Sweden [2,3,3-²H]Serine THF€ dTMP SHMT1 Glycine ← SHMT2 Relative Enrichment From [2,3,3 - 2H]Serine 0.6 🗖 D+1 THF TH9619 🗖 D+2 NAD⁺ -THF 📥 dTMP 0.4 MTHFD2 NADH~ NADP⁺ -THF NADPH 0.2 -**JTHFD1** MTHFD1L -THF > Purines **ATP** 0.0 Formate MTHFD1 (FS)

Hypoxanthine does *not* induce toxicity by inhibiting UMPS

ALICIE

Cell

Physiologic Medium Rewires Cellular Metabolism and Reveals Uric Acid as an Endogenous Inhibitor of UMP Synthase

Graphical Abstract

Authors

Jason R. Cantor, Monther Abu-Remaileh, Naama Kanarek, ..., Abner Louissaint, Jr., Caroline A. Lewis, David M. Sabatini

Correspondence

sabatini@wi.mit.edu

In Brief

Mimicking the metabolite composition of human plasma in culture extensively alters the metabolic landscape of cells and highlights the potential to uncover new metabolite-drug interactions.

Hypoxanthine does *not* induce toxicity by inhibiting UMPS

Serine provides metabolic flexibility to sustain challenging

microenvironments

Benzarti*, Delbrouck* et al., Cells 2020