Tumor and host metabolism driving drug resistance

in acute myeloid leukemia

Jean-Emmanuel Sarry

Team METAML – METabolism and drug resistance in Acute Myeloid Leukemia

Cancer Research Center of Toulouse

Relapses and drug resistance in cancer

Relapse: regrowth of tumor-regenerating drug-resistant cells following initial clinical benefit

Drug resistance: genetic and non-genetic mechanisms induced through the selective pressures imposed by therapy

Drug persistence: minimal residual disease that remains after an effective anti-cancer therapy

Drug persistence within residual disease in acute myeloid leukemia

What is the biology of Relapse-Initiating Cells (RICs) or Drug-Tolerant Persisters (DTPs) enriched within Minimal Residual Disease (MRD) *in vivo* ?

RICs are not necessarily enriched in AML stem cells when assayed in NSG mice

AML stem cells are also heterogeneous in their response to AraC

. Collab. M. Carroll, G. Dan<u>e</u>t-Despoyer (୯୮Penn)

Duy et al. Cancer Discov. 2021; Boyd et al. Cancer Cell 2018; Farge et al. Cancer Discov. 2017

RICs are enriched in resilient cells with an inflammatory/senescent phenotype

Observed Genes

Guiraud *et a*l in prep; Duy et al. Cancer Discov. 2021 Aroua*, Boet*, Ghisi* *et a*l. Cancer Discov. 2020; Farge* *et al.* Cancer Discov. 2017 Minimal Residual Disease is enriched in Relapse-Initiating Cells with Drug-Tolerant Persisters and an increased mitochondrial oxidative (High OxPHOS) metabolism

Collab. Y. Collette (CRCM, Marseille) Collab. M. Carroll, G. Danet-Desnoyer (UPenn, USA) Collab. M. Selak (UPenn, USA), M. Brand (Buck Institute, USA)

High OxPHOS phenotype of RICs is the consequence of enhanced mitochondrial metabolic activities with lipid oxidation

Collab. M. Selak (UPenn, USA), M. Brand (Buck Institute, USA)

High OxPHOS phenotype of RICs is the consequence of enhanced mitochondrial machinery

Ducau et al. unpublished data Farge *et al.* Cancer Discov. 2017 Moschoi Griessinger. Blood. 2016

Collab. M. Selak (UPenn, USA), M. Brand (Buck Institute, USA) Collab E. Griessinger, JF Peyron (C3M, Nice)

High OxPHOS phenotype of RICs is the consequence of enhanced mitochondrial machinery with heme/ISC biosynthesis

Iron homeostasis (ferritin) is associated with bad prognosis in AML patients

(Bertoli and al. EJH, 2019) (C) **Overall survival** Ferritin - <=900 µg/L — — >900 µg/L 0.75 Survival probability 0.25 00.00 P < 0.0001 12 24 72 108 36 48 60 84 96 Analysis time (month)

Ferritin

Clément Larrue

Larrue *et al.* STM. In revision J. Tamburini's Team, Gevena University

Increased VDAC1 and mitochondrial relocation of BCL2 in drug persisters

Increased mitochondria-ER contact sites (MERCS) in Drug Persisters

High OxPHOS phenotype

Proximity Ligation Assay IP3R1 / VDAC1

Electronic microscopy

Ducau et al. unpublished data. Bosc *et al* Nature Cancer 2021

Increased mitochondria-ER contact sites (MERCS) in Drug Persisters

- Transfer of Ca²⁺ from ER to mitochondria

Proximity Ligation Assay IP3R1 / VDAC1

Electronic microscopy

Ducau et al. unpublished data. Bosc *et al* Nature Cancer 2021 Co-evolutionary interplay between OxPHOS state, mitochondrial BCL2 dependence and MERCS, redox balance, inflammation, drug persistence/resistance to apoptosis in AML

Mitochondrial priming to apoptotic cell death

Increased mitochondria-ER contact sites (MERCS) in Drug Persisters

- Transfer of Ca²⁺ from ER to mitochondria

- Site of autophagosomes formation

Hailey et al, **Cell**, 2010 Hamasaki et al, **Nature,** 2013 Garofalo et al, **Autophagy**, 2016

Autophagy is activated in drug persisters

Patients # TUH76

Autophagy implicates in AraC-induced mitochondrial adaptation

Autophagy regulates lipid catabolism to support OxPHOS

BODIPY / DAPI

Autophagy

AML

+

Ctrl 3-MA

MERCS-dependent lipophagy is activated to support FAO and OxPHOS in drug persisters

OxPHOS phenotype reflects a mitochondrial adaptation induced by a specific transcriptional program in response to an early AraC-triggered mitochondrial stress

Summary I

- > Changes in mitochondrial energetics, metabolism, and structure are hallmarks of drug resistance: central role of adaptations in mitochondrial dynamics and OxPHOS flexibility during therapy, driving residual disease and drug tolerance/persistence in AML
- > Inhibiting ANY aspect of mitochondrial OxPHOS metabolism circumvents adaptive resistance to drugs and enhances the sensitivity of AML cells to chemotherapy or currently approved targeted therapies
- > Mitochondrial metabolism associated with drug resistance/persistence in other blood cancers and several therapyresistant solid cancers including melanoma, PDAC, TNBC, sarcoma, metastatic grade...

LETTER

SCIENCE IMMUNOLOGY | RESEARCH ARTICLE

Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function

Andren Vinde^{1 Ja}, Pienglengin Petrzenert^{1 Ja}, Costa A. Lynsteith¹, Hacquarg Ying², Sters Sänchert², Marson Marchenler^{1,4}, Alesandry Caragu^{2-1,5}, Tenna Green^{3,4}, Sahli Self, Vingina Galami, Maria Kuni Alinosa¹, Florata Malirt, Binnea Gila, Lagi Neur¹, Galamina Generes^{1,4}, Angel K. Deeni, Arssish Raper^{1,4}, Ramong Yao¹, Tanana Banergi, ¹, ¹Ma Kang¹, Min Yuan¹, John M. Asag¹, Y. Ann Ning¹, Teoreth P. Editherand, Alex C. Kienzuletan¹, Hammin Wang^{2,4}, Issue B. Floreing^{2,4}, Paria C. Catril^{1,5}, Sandi A. Delthard^{1,6} & Galab F. Desetta^{1,5}.

OXPHOS promotes apoptotic resistance and cellular

persistence in T_H17 cells in the periphery and tumor microenvironment

Hanna S. Hong^{1,2}, Nneka E. Mbah², Mengrou Shan², Kristen Loesel^{2,3}, Lin Lin², Peter Sajjakulnukit^{2,3}, Luis O. Correa¹, Anthony Andren², Jason Lin², Atsushi Hayashi⁴,

Cell Metabolism

MYC/PGC-1α Balance Determines the Metabolic Phenotype and Plasticity of Pancreatic Cancer Stem Cells

Cell Metabolism

MYC and MCL1 Cooperatively Promote Chemotherapy-Resistant Breast Cancer Stem Cells via Regulation of Mitochondrial Oxidative Phosphorylation

Article

Article

High OxPHOS activities are the metabolic consequence

of an enhanced catabolic capacities and flexibility in IDH1/2 mutant AML

Mitochondrial OxPHOS supports IDH mutant cell proliferation and chemoresistance in a C/EBP α -dependent manner

Stuani et al. JEXPMED. 2021

Might C/EBP α be implicated into other metabolic pathways or subgroups of AML patients ?

Patients over-expressing C/EBP α are associated with FLT3 mutations

Patients overexpressing C/EBP α are associated with FLT3 mutations and are enriched in gene signatures related to lipid metabolism

C/EBP α activation is linked to FLT3-ITD mutations and lipid biosynthesis

FLT3i-induced cell death is dependent on CEBP α

<u>CEBP α overexpression</u>

<u>CEBP α invalidation</u>

QUIZ and GILT: FLT3-ITD inhibitors

CEBP α regulates the lipidome of FLT3-ITD AML cells

FA saturation distribution in FLT3^{MUT} AML cells in a C/EBPα-dependent manner

<u>CEBPα invalidation or FLT3 inhibiton</u>

C/EBP α mediates sensitivity to lipid oxidative stress induced by ferroptotic inducer

Invalidation vs. Overexpression of CEBP α

RSL3: GPX4 inhibitor

SCD mediates sensitivity to lipid oxidative stress induced by ferroptotic inducer

Combination of GPX4i (ferroptosis inducers) with FLT3i enhances cell death in FLT3-ITD primary cells *ex vivo*

Genetic invalidation of GPX4 increases anti-leukemic effect of GILT in vivo

GPX4 inhibitor APR-246 increases anti-leukemic effect of GILT in vivo

C/EBPα confers dependence to fatty acid anabolic pathways in FLT3-mutant leukemia

Collaboration : Jérôme Tamburini (University of Geneva)

Birsen*, Sabatier*, Lauture*, Mouche*,, Tamburini* and Sarry*. Cancer Discovery. July 2023.

C/EBPα confers dependence to fatty acid anabolic pathways in FLT3-mutant leukemia

Collaboration : Jérôme Tamburini (University of Geneva)

Birsen*, Sabatier*, Lauture*, Mouche*,, Tamburini* and Sarry*. Cancer Discovery. July 2023.

Could ketogenic diet enhance anti-leukemic effect of GILT in vivo ?

Protein

Fat

Carbohydrate

Ketogenic diet

Goupille et al. unpublished; Collaboration with ENVT (N Bourges, F Granat)

Ketogenic diet enhances anti-leukemic effect of GILT in vivo

Both vegetal-/animal-based ketogenic diets enhance anti-leukemic effect of GILT in vivo

At dissection

ns

ഹ

ᢣᠧ

ഹ

പ്പ

Lipid abundance in diets

Goupille et al. Unpublished.

Both vegetal-/animal-based ketogenic diets enhance anti-leukemic effect of GILT in vivo

At dissection

Lipid abundance in diets

Host lipid abundance (mice blood)

Goupille et al. Unpublished.

Both vegetal-/animal-based ketogenic diets enhance anti-leukemic effect of GILT in vivo

Goupille et al. Unpublished.

Summary II

- > Tumor FAS/FAO balance and host lipid metabolism might modulate drug response in AML: precision diets based on the drug resistance mechanism (GILT versus AraC) !
- > Metabolic model of drug resistance in AML but relevant to multiple therapy-resistant solid cancers including melanoma, PDAC, TNBC, sarcoma, metastatic grade...

Solid tumors: Passaniti et al Mol. Carci. 2022; Xue et al. J Med Chem. 2022; Evans et al. Cancer Res. 2020; Marine et al, Nature Review Cancer. 2020 Heme tumors: Stuani and Sarry. Cell Metab. 2020; Van Gastel et al. Cell Metab. 2020;

Acknowledgements

Current members

Emeline Boet Alexandre Boudet Anais Chekroun **Charlotte Ducau** Margherita Ghisi Léa Goupille **Fanny Granat** Nathan Guiraud Alexis Hucteau Latifa Jarrou **Carine Joffre Clément Larrue** Laura Lauture Margaux Oberling Loic Platteew Laura Poillet Goncalo Pomba Nathaniel Polley Ambrine Sahal **Estelle Saland** Maxime Sarot

Alumni

Charly Courdy Lucille Stuani Marie Sabatier Guillaume Cognet Thomas Farge Claudie Bosc Pierre-Luc Mouchel Nesrine Aroua Clément Larrue Mohsen Hosseini Gabriel Lemercier Héléna Boutzen Fabienne de Toni Sarah Scotland-Skuli

Follow SarryLab @jeansarry

@jeansarry PhD/Research Assistant/Postdoc positions in 2024/2025

Acknowledgements

Lab. Hématologie IUCT-O **Animal facility CREFRE** CRCT Service Hématologie IUCT-O **Biobanque/CRB HIMIP** Xavier Collet Stéphane Manenti Christian Récher Véronique De Mas Cédric Beaudelin Véra Pancaldi Suzanne Tavitian Francois Vergez Marie Lulka Nina Verstaten **Eric Delabesse** Sarah Bertoli Julie Guillermet Pole techno CRCT **Pierre Bories** Marie-Laure Nicolau-Travers **Coralie Caryon** Frédéric Lopez Muriel Picard **Pierre Cordelier** Marie Tosolini, Fred Pont Lab. Génét Myélome IUCT-O Ludovic Martinet Hervé Avet-Loiseau, Céline Mazzotti Nathalie Saint-Laurent Antoine Graffeuil, Corentin Pignon Laetitia Ligat, Manon Farcé **METATOUL** From France and Abroad FONDAT Jean-Charles Portais LA LIQUE A. Carriere-Pazat, I Ader, TOULOUSE CANCER SANTÉ Floriant Bellvert B. Garmy-Susini (Toulouse) Edern Cahoreau Y. Collette, R. Castellano Lara Gales N. Vey (Marseille) Réseau Laurette Fugain Lindsay Peyriga MétaboCancer E. Griessinger, JF Peyron (Nice) RÉGION Pierre Millard MIDI-PYRÉNÉES GSO G. Bossis, L. Linares, Serguei Sokol L. Le Cam (Montpellier) Cancer 2014-2019 **Justine Bertrand-Michel** J. Tamburini (Geneva) INSTITU Fabien Jourdan M. Tschan (Bern) NATIONA Nathalie Poupin DU CANCE P. Nazarov, T. Kaoma, N. Nicot (Lux) CEA JC. Marine (Brussels), P Gallipoli (UK) FONDATION ARC POUR LA RECHERCHE Florence Castelli M. Carroll, S. Scotland (UPenn) SUR LE CANCER François Fenaille M. Konopleva, C. DiNardo (Houston) Christophe Junot A. Wei (Melbourne)

"It is not the strongest of the species that survives, nor the most intelligent that survives. It is the one that is the most (mitochondrially) adaptable to change."

High OxPHOS phenotype of Drug Persisters is the consequence of enhanced mitochondrial substrate utilizations

Cognet *et al.* unpublished data Stuani *et al.* in prep. Van Gastel *et al* Cell Metabolism. 2020. Farge *et al.* Cancer Discov. 2017

What metabolic pathways support this High OxPHOS activity and mitochondrial phenotype of RICs *in vivo* ?

Highly expressed metabolite transporters and increased nutrient utilization in High OxPHOS RICs

CD36^{pos} extramedullary RICs induced lipid crosstalk within tissues to favor blast dissemination that leads to relapse in PDX and patients

AML: a model metastatic disease with a metabolic driver

Farge et al in prep

Current unanswered questions

•How do intra-/inter-tissue metabolic dialogues and host metabolism support the OxPHOS metabolism of persisters?

BM and **extramedullary persisters** redirect carbon and nitrogen metabolism within tissues and from host (mice and patients)

Farge et al. in prep; Stuani and Sarry. Cell Metab. 2020; Ye et al Cancer Discov. 2020.; Ye et al. Cancer Cell. 2018

BM and extramedullary RICs redirects carbon and nitrogen metabolism within tissues in PDXs

Tissue reservoirs of blasts

Cognet et al in prep

Perspectives – Novel paradigms

Two-compartment Tumor metabolism

How microenvironment, host metabolism and diets support the OxPHOS metabolism ?

Adapted from Lisanti et al. 2011

In orange: our published and unpublished works; in blue from our labs

Summary I

> MRD is enriched in persisting cells with High OxPHOS metabolism, as the consequence of a mitohormetic Darwinian process of adaptive response to stress

> Evolutionary interplay between mitochondrial metabolism/state and resistance to apoptosis occurs in drug persisters within MRD

Saland et al. in prep; Bosc et al. Nature Cancer. 2021

Stuani and Sarry. Cell Metab. 2020; Aroua, Boet, Ghisi et al. Cancer Discov. 2020; Hosseini et al. Cancer Res. 2019; Farge et al. Cancer Discov. 2017

Drug persisters are more sensitive to mitochondrial inhibitors

Selective ETC/OxPHOS inhibitors

Indirect ETC/OxPHOS inhibitors

Targeting any aspect of High OxPHOS metabolism

High OxPHOS phenotype of RICs is the consequence of enhanced mitochondrial machinery and mitochondrial utilizations

Ducau et al. unpublished data Farge *et al.* Cancer Discov. 2017 Moschoi Griessinger. Blood. 2016 OxPHOS phenotype reflects a mitochondrial recovery as a mitochondrial stress response induced by an ATF4-driven transcriptional program and adenosine-CD39-PKA pathway upon AraC

Aroua*, Boet*, Ghisi* et al. Cancer Discov. 2020

Blocking mitochondrial recovery by targeting adenosine-CD39-PKA-ATF4 axis in vivo

Aroua*, Boet*, Ghisi* et al. Cancer Discov. 2020

Link between high OxPHOS, mitochondrial BCL2 dependence and resistance to apoptosis in drug persisters: increased mitochondrial calcium content

Mitochondrial priming to apoptotic cell death

High

Closed

High

High

Resistant

No/transient

Mitochondria autoregulate their own substrate availability to support OxPHOS of RICs

Ketogenic diet enhanced PI3Ki efficacy in cancer and AML

VEN+AraC doublet therapy better than AraC alone in PDX

Bosc et al Nature Cancer 2021

AraC-induced high OxPHOS state is blocked by VEN+AraC doublet therapy

