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Relapses and drug resistance in cancer

Relapse: regrowth of tumor-regenerating drug-resistant cells following initial clinical benefit

Drug resistance: genetic and non-genetic mechanisms induced through the selective pressures 
imposed by therapy 

Drug persistence: minimal residual disease that remains after an effective anti-cancer therapy



Drug persistence within residual disease in acute myeloid leukemiaOverall survival of AML patients ≥60 years
at TUH

Kantarjian et al. Blood Cancer Journal (2021)

Survival of de novo AML at MD Anderson 
Intensive chemotherapies

60+ years

Bertoli et al, Blood Cancer Journal 2017

What is the biology of Relapse-Initiating Cells (RICs) 
or Drug-Tolerant Persisters (DTPs) 

enriched within Minimal Residual Disease (MRD) in vivo ?
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RICs are not necessarily enriched in AML stem cells when assayed in NSG mice

Collab. M. Carroll, G. Danet-Desnoyer (UPenn) Duy et al. Cancer Discov. 2021; Boyd et al. Cancer Cell 2018; Farge et al. Cancer Discov. 2017

Canonical Leukemic Stem Cell features
(CD34 CD38 phenotype, G0 cells, cell cycle 
markers, stem cell genes, LIC frequency)

were similar in control and resistant cells

CD34+ CD38- cells 
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Figure 3 
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Guiraud et al in prep; Duy et al. Cancer Discov. 2021
Aroua*, Boet*, Ghisi* et al. Cancer Discov. 2020; Farge* et al. Cancer Discov. 2017

ì Senescence-like resilient cells 
with latent state and

ì stress/inflammatory response
ì EMT phenotype

RICs are enriched in resilient cells with an inflammatory/senescent phenotype

Figure 4 
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Hosseini et al. Cancer Res. 2019
Farge* et al. Cancer Discov. 2017

ì Mitochondrial respira8on+ATP
ì TCA cycle intermediates

ì ROS content

Collab. Y. Collette (CRCM, Marseille) 
Collab. M. Carroll, G. Danet-Desnoyer (UPenn, USA)
Collab. M. Selak (UPenn, USA), M. Brand (Buck Institute, USA)

High OxPHOS activity 
and phenotype

Minimal Residual Disease is enriched in Relapse-Initiating Cells with Drug-Tolerant 
Persisters and an increased mitochondrial oxidative (High OxPHOS) metabolism
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Farge* et al. Cancer Discov. 2017

High OxPHOS phenotype of RICs is the consequence 
of enhanced mitochondrial metabolic activities with lipid oxidation

Collab. M. Selak (UPenn, USA), M. Brand (Buck Institute, USA)
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Relapse

Ducau et al. unpublished data
Farge et al. Cancer Discov. 2017

Moschoi …. Griessinger. Blood. 2016

High OxPHOS phenotype of RICs is the consequence 
of enhanced mitochondrial machinery

Collab. M. Selak (UPenn, USA), M. Brand (Buck Institute, USA)
Collab E. Griessinger, JF Peyron (C3M, Nice)

ì Mitochondrial biogenesis
+

ì Mitochondrial transfer 
from stromal cells

DTPs/RICs

Cytarabine MRDDiagnosis

ì Mitochondrial metabolic activities
ì fatty acid 
oxidation

High OxPHOS activity and phenotype
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TCA
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Lipids
ì Mitochondrial mass 

ì Mitochondrial number



Saland et al. in prep

High OxPHOS phenotype of RICs is the consequence 
of enhanced mitochondrial machinery with heme/ISC biosynthesis

ì Mitochondrial iron and 
ferritin content

+
ì Heme/porphyrin and ISC 

biosynthesis

ì Mitochondrial biogenesis

DTPs/RICs

Cytarabine MRDDiagnosis Relapse

High OxPHOS activity and phenotype
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Larrue et al. STM. In revision
J. Tamburini’s Team, Gevena University

Iron homeostasis (ferritin) is associated with bad prognosis in AML patients

Ferritin
(Bertoli and al. EJH, 2019)

Clément Larrue

Chemoresistant cell 
compartment

Chemosensitive cell 
compartment



Bosc et al. Nature Cancer. 2021

Increased VDAC1 and mitochondrial relocation of BCL2 in drug persisters

FAO
TCA

OXPHOS

VDAC1

VDAC1VDAC1 ì VDAC1 expression and 
mitochondrial BCL2 transloca9on

ì Mitochondrial Calcein Reten8on 
= inhibi8on of MPTP opening

ì BCL2 dependence

DTPs/RICs

Cytarabine MRDDiagnosis Relapse

High OxPHOS activity and phenotype



Ducau et al. unpublished data.
Bosc et al Nature Cancer 2021
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Ducau et al. unpublished data.
Bosc et al Nature Cancer 2021
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Ca2+

Mitochondrial priming to apoptotic cell death
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Co-evolutionary interplay between OxPHOS state, mitochondrial BCL2 dependence and MERCS, 
redox balance, inflammation, drug persistence/resistance to apoptosis in AML



Ctrl

Increased mitochondria-ER contact sites (MERCS) in Drug Persisters

Hailey et al, Cell, 2010
Hamasaki et al, Nature, 2013 
Garofalo et al, Autophagy, 2016

- Site of autophagosomes formation
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- Transfer of Ca2+ from ER to mitochondria
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Autophagy regulates lipid catabolism to support OxPHOS

Bosc* et al Nature Comms 2020.



MERCS-dependent lipophagy is activated to support FAO and OxPHOS
in drug persisters

FFA

Lipophagy

FAO
TCA

OXPHOS

autophagosome

MERCS
IP3R1

Mfn2

VDAC1Ca2+

Bosc et al Nature Cancer 2021; Bosc* et al Nature Comms 2020.
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OxPHOS phenotype reflects a mitochondrial adaptation induced by a specific 
transcriptional program in response to an early AraC-triggered mitochondrial stress

ì FAO and OxPHOS
ì Mito biogenesis
ì An=oxidants

PGC1α
TFAM
NRF1/2

ì cAMP-PKA
ì ATF4

Cytarabine

Drug tolerance
Drug resistance

Drug Persisters

Mitochondrial 
Stress Response

Mitochondrial 
Recovery/Adapta9on

Mitochondrial 
Transient Dysfunc=on

ì ROS
ì mtDNA 

release
î ATP

î 
ΔΨm

Boet et al. in prep
Aroua*, Boet*, Ghisi* et al. Cancer Discov. 2020



> Changes in mitochondrial energetics, metabolism, and structure are hallmarks of drug resistance: central role of 
adaptations in mitochondrial dynamics and OxPHOS flexibility during therapy, driving residual disease and drug 
tolerance/persistence in AML

> Inhibiting ANY aspect of mitochondrial OxPHOS metabolism circumvents adaptive resistance to drugs and enhances 
the sensitivity of AML cells to chemotherapy or currently approved targeted therapies

> Mitochondrial metabolism associated with drug resistance/persistence in other blood cancers and several therapy-
resistant solid cancers including melanoma, PDAC, TNBC, sarcoma, metastatic grade…

Summary I

Mitochondrial 
OxPHOS

Phenotype

Drug Resistance/Persistence

Cytarabine 

BCL2 
inhibitors IDH mutation

inhibitors

FLT3 mutation
inhibitors

Mitoxantrone
Vincristine

Actinomycin D 

Chemotherapy-Resistant Human  
Acute Myeloid Leukemia Cells Are  
Not Enriched for Leukemic Stem  
Cells but Require Oxidative Metabolism 

Thomas Farge1,2,3, Estelle Saland1,2,3, Fabienne de Toni1,2,3, Nesrine Aroua1,2,3, Mohsen Hosseini1,2,  
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T  C E L L S  

OXPHOS promotes apoptotic resistance and cellular 
persistence in TH17 cells in the periphery and tumor 
microenvironment 
Hanna S. Hong1,2, Nneka E. Mbah2, Mengrou Shan2, Kristen Loesel2,3, Lin Lin2,  
Peter Sajjakulnukit2,3, Luis O. Correa1, Anthony Andren2, Jason Lin2, Atsushi Hayashi4,  
Brian Magnuson5, Judy Chen1, Zhaoheng Li6, Yuying Xie6, Li Zhang2, Daniel R. Goldstein7,  
Shannon A. Carty1,8,9, Yu Leo Lei1,3,10, Anthony W. Opipari11, Rafael J. Argüello12,  
Ilona Kryczek1,13, Nobuhiko Kamada1,4, Weiping Zou1,3,13,14, Luigi Franchi1,2,  
Costas A. Lyssiotis1,2,3,4,9* 

T cell proliferation and cytokine production are bioenergetically and biosynthetically costly. The inability to 
meet these metabolic demands results in altered differentiation, accompanied by impaired effector function, 
and attrition of the immune response. Interleukin-17–producing CD4 T cells (TH17s) are mediators of host 
defense, autoimmunity, and antitumor immunity in the setting of adoptive T cell therapy. TH17s are long- 
lived cells that require mitochondrial oxidative phosphorylation (OXPHOS) for effector function in vivo. Consid-
ering that TH17s polarized under standardized culture conditions are predominately glycolytic, little is known 
about how OXPHOS regulates TH17 processes, such as their ability to persist and thus contribute to protracted 
immune responses. Here, we modified standardized culture medium and identified a culture system that reliably 
induces OXPHOS dependence in TH17s. We found that TH17s cultured under OXPHOS conditions metabolically 
resembled their in vivo counterparts, whereas glycolytic cultures were dissimilar. OXPHOS TH17s exhibited in-
creased mitochondrial fitness, glutamine anaplerosis, and an antiapoptotic phenotype marked by high BCL-XL 
and low BIM. Limited mitophagy, mediated by mitochondrial fusion regulator OPA-1, was critical to apoptotic 
resistance in OXPHOS TH17s. By contrast, glycolytic TH17s exhibited more mitophagy and an imbalance in BCL- 
XL to BIM, thereby priming them for apoptosis. In addition, through adoptive transfer experiments, we demon-
strated that OXPHOS protected TH17s from apoptosis while enhancing their persistence in the periphery and 
tumor microenvironment in a murine model of melanoma. Together, our work demonstrates how metabolism 
regulates TH17 cell fate and highlights the potential for therapies that target OXPHOS in TH17-driven diseases. 
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INTRODUCTION 
Interleukin-17 (IL-17)–producing CD4 T cells (TH17s) are a subset 
of CD4 T cells critical for host defense and mucosal immunity. 
TH17s are long-lived cells that exhibit the capacity to self-renew 
and establish tissue residency after antigen clearance (1–5). These 
features facilitate their role in autoimmunity and antitumor immu-
nity in the setting of adoptive T cell therapy (3, 4, 6–9). In addition, 

these features suggest that TH17s evade mechanisms that would oth-
erwise lead to their deletion during the contraction phase, such as 
apoptosis, which is a type of programmed cell death. However, the 
factors that enable TH17s to evade apoptotic cell death and be main-
tained as long-lived cells have yet to be defined. 

Glycolysis and mitochondrial oxidative phosphorylation 
(OXPHOS) are the two principal bioenergetic pathways in a cell, 
and their differential activity has major impacts on virtually all 
aspects of cellular metabolism. Predictably, each of these has been 
similarly implicated in controlling T cell fate and function. Recent 
studies have further refined our understanding of the metabolic 
programs that regulate T cells, which have revealed that T cell 
subsets adopt distinct and oftentimes unique metabolic dependen-
cies to execute subset-specific functions (10). Nevertheless, most 
immunometabolism studies have focused on the effects of metabo-
lism at the outset of an immune response. Metabolic inhibition 
during T cell activation can override cytokine-mediated differenti-
ation, impair effector cytokine production, and thus alter the type 
and magnitude of an immune response (11–15). It remains an out-
standing question how metabolic activity during the effector phase 
regulates T cell fate during subsequent phases, such as the contrac-
tion and memory phases. 

Furthermore, our knowledge of TH17 metabolism largely relies 
on in vitro studies that identified TH17s as predominately glycolytic, 
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Mitochondrial OxPHOS supports IDH mutant cell proliferation and chemoresistance 
in a C/EBPa-dependent manner 

Stuani et al. JEXPMED. 2021
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Patients overexpressing C/EBP𝛼 are associated with FLT3 mutations 
and are enriched in gene signatures related to lipid metabolism
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C/EBP𝛼 activation is linked to FLT3-ITD mutations and lipid biosynthesis
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FLT3i-induced cell death is dependent on CEBP𝛼
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CEBP𝛼 regulates the lipidome of FLT3-ITD AML cells
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FA saturation distribution in FLT3MUT AML cells in a C/EBPα-dependent manner 
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Combination of GPX4i (ferroptosis inducers) with FLT3i enhances cell death 
in FLT3-ITD primary cells ex vivo
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Genetic invalidation of GPX4 increases anti-leukemic effect of GILT in vivo
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GPX4 inhibitor APR-246 increases anti-leukemic effect of GILT in vivo
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C/EBPα confers dependence to fatty acid anabolic pathways in FLT3-mutant leukemia

Birsen*, Sabatier*, Lauture*, Mouche*, ……., Tamburini* and Sarry*. Cancer Discovery. July 2023.
Collaboration : Jérôme Tamburini (University of Geneva)



C/EBPα confers dependence to fatty acid anabolic pathways in FLT3-mutant leukemia

Birsen*, Sabatier*, Lauture*, Mouche*, ……., Tamburini* and Sarry*. Cancer Discovery. July 2023.
Collaboration : Jérôme Tamburini (University of Geneva)



Could ketogenic diet enhance anti-leukemic effect of GILT in vivo ?

Salvadori and Longo, Nature, 2021; Lien and al, Nature, 2021 
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Both vegetal-/animal-based ketogenic diets enhance anti-leukemic effect of GILT in vivo

Goupille et al. Unpublished.
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Both vegetal-/animal-based ketogenic diets enhance anti-leukemic effect of GILT in vivo
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Leukemia
Burden

Metabolic
Phenotype

Transient state

OxPHOS
FAO

CD39+CD36+MPO+

glutamine
glutamate
aspartate

Disease progressionTherapies

Diagnosis Remission Relapse

RICs

Tolerance –> Resistance

Basal state

Metabolic
selective pressure

Metabolic
adaptation

Summary II
> Tumor FAS/FAO balance and host lipid metabolism might modulate drug response in AML: precision 

diets based on the drug resistance mechanism (GILT versus AraC) !

> Metabolic model of drug resistance in AML but relevant to multiple therapy-resistant solid cancers 
including melanoma, PDAC, TNBC, sarcoma, metastatic grade…

Solid tumors: Passaniti et al Mol. Carci. 2022; Xue et al. J Med Chem. 2022; Evans et al. Cancer Res. 2020; Marine et al, Nature Review Cancer. 2020
Heme tumors: Stuani and Sarry. Cell Metab. 2020; Van Gastel et al. Cell Metab. 2020; 
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“It is not the strongest of the species that survives, nor the most intelligent that survives.  
It is the one that is the most (mitochondrially) adaptable to change.”   





Cytarabine

ì FaQy acid oxida8on

ì  Respiratory 
substrates utilization

And catabolic flexibility

High OxPHOS phenotype of Drug Persisters is the consequence 
of enhanced mitochondrial substrate utilizations

FAO
TCA

OXPHOS

DPs/RICs

ì Mitochondrial metabolic activities

Cognet et al. unpublished data
Stuani et al. in prep.
Van Gastel et al Cell Metabolism. 2020.
Farge et al. Cancer Discov. 2017



What metabolic pathways support this High OxPHOS
activity and mitochondrial phenotype of RICs in vivo ?

Glucose
ATP

ATP Fatty acids
Glutamine
Amino acids
Branched 
Chain AA

?

? ?

PyruvateLactate

Lactate

?



Highly expressed metabolite transporters and increased 
nutrient utilization in High OxPHOS RICs 

Fatty Acid
Oxidationì

Lipids

Aspartate
Glutamine

Mitochondrial 
OxPHOS
Activities

CD36ìCD39ì
P2RY13ì

Extracellular ATP/ADP

SLC7A11ì
Cysteine

SLC1A3ì

Guiraud et al unpublished
Stuani and Sarry. Cell Metab. 2020.

Aroua, Boet, Ghisi et al. Cancer Discov. 2020.
Van Gastel et al. Cell Metab. 2020; Jones et al Blood 2019; 

Farge et al. Cancer Discov. 2017.

Pyrimidine
DHODH

Glutathione
SDH

cAMP-PKA
PGC1a

Arginine
Polyamines

SLC7Axì



CD36pos extramedullary RICs induced lipid crosstalk within Bssues to 
favor blast disseminaBon that leads to relapse in PDX and paBents 

Farge et al in prep

Bone 
Marrow

Extramedullary
Organs

Migration Migration ?
Metabolic 
crosstalk

Adipose tissue

Liver Lung

Stromal Cells
(Adipocytes, hepatocytes,
mesenchymal cells)

CD36

circulation
Negative MRD in BM and blood

Diagnosis

CD36 AraC

Chemoprotection
Stem cell phenotype maintenance

AML: a model metasta9c disease with a metabolic driver



�How do intra-/inter-tissue metabolic dialogues and host metabolism support the OxPHOS 
metabolism of persisters?

Current unanswered questions

Stromal
compartment

Leukemic
compartment

OXPHOS
FAO

Mitochondrial 
metabolism

Anabolic
growth

Redox 
homeostasis

Arginine
Cysteine
Glutamine
Aspartate

UPTAKE AND 
CONVERSION 

OF AMINO ACIDS

Catabolism

Farge et al. in prep; Stuani and Sarry. Cell Metab. 2020; Ye et al Cancer Discov. 2020.; Ye et al. Cancer Cell. 2018

BM and extramedullary persisters redirect carbon and nitrogen metabolism 
within tissues and from host (mice and patients) 



Cognet et al in prep
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How microenvironment, host metabolism and diets 
support the OxPHOS metabolism ?

Adapted from Lisanti et al. 2011

Perspectives – Novel paradigms

Two-compartment
Tumor metabolism
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> MRD is enriched in persisting cells with High OxPHOS metabolism, as the consequence 
of a mitohormetic Darwinian process of adaptive response to stress

> Evolutionary interplay between mitochondrial metabolism/state and resistance to apoptosis 
occurs in drug persisters within MRD

TherapiesDiagnosis Remission Relapse

Le
uk

em
ia

 B
ur

de
n

Persisters
with mitochondrial 

adaptations

Mitochondrial 
Stress Response

Therapies

Mitochondrial 
Adaptation/Recovery

Drug tolerance
Drug resistance

Transient
Mitochondrial Dysfunction

Early stage Late stage

High 
OxPHOS

Saland et al. in prep; Bosc et al. Nature Cancer. 2021
Stuani and Sarry. Cell Metab. 2020; Aroua, Boet, Ghisi et al. Cancer Discov. 2020; Hosseini et al. Cancer Res. 2019; Farge et al. Cancer Discov. 2017

Summary I



Drug persisters are more sensitive to mitochondrial inhibitors

Sensitive 
to AraC

Stuani et al. BMC Biol. 2019; Bosc et al. Cell Metab. 2017
Farge et al. Cancer Discov. 2017; Samudio et al. JCI. 2010

Resistant
to AraC

Targeting any aspect of High OxPHOS metabolism

Selec=ve ETC/OxPHOS inhibitors Indirect ETC/OxPHOS inhibitors



Ducau et al. unpublished data
Farge et al. Cancer Discov. 2017

Moschoi …. Griessinger. Blood. 2016

ì Respiratory substrates 
utilization

FA oxidation
glucose/pyruvate/lactate oxidation

AA oxidation

High OxPHOS phenotype of RICs is the consequence 
of enhanced mitochondrial machinery and mitochondrial utilizations

Collab. M. Selak (UPenn, USA), M. Brand (Buck Institute, USA)
Collab E. Griessinger, JF Peyron (C3M, Nice)

FAO
TCA

OXPHOS

RICs

ì Mitochondrial metabolic 
activities

Cytarabine

ì Mitochondrial number
 

ì Mitochondrial biogenesis
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OxPHOS phenotype reflects a mitochondrial recovery as a mitochondrial stress response induced 
by an ATF4-driven transcriptional program and adenosine-CD39-PKA pathway upon AraC

ì FAO and OxPHOS

ì Mitochondrial biogenesis

ì Antioxidants

PGC1α
TFAM

NRF1/2

ì Adenosine-CD39

ì cAMP-PKA

ì ATF4

Mitochondrial 
Integra9ve Stress Response

Mitochondrial 
Recovery

Aroua*, Boet*, Ghisi* et al. Cancer Discov. 2020
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Mitochondrial priming to apoptotic cell death
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Mitochondria autoregulate their own substrate availability 
to support OxPHOS of RICs
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Lipophagy
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Ketogenic diet enhanced PI3Ki efficacy in cancer and AML
and a methionine- restricted diet can inhibit 
the growth of multiple tumour types47–51.

A major challenge in interpreting these 
dietary studies, however, is the extent 
of variability in the observed effects of a 
given diet. For example, although caloric 
restriction impairs the growth of most 
tumour models, the degree to which 
different cancer types respond to caloric 
restriction can be variable, and even 
different tumour subpopulations within 
the same tissue in a mouse model of lung 
cancer can have different sensitivities to the 
effects of caloric restriction19,29. Similarly, 
the ketogenic diet has received considerable 
popular attention in recent years because it 
has been shown to inhibit tumour growth in 
some cancer models, particularly in mouse 
models of brain cancer52–57, and yet it can 
also accelerate tumour progression in other 
mouse cancer models20,58,59. The observation 
of opposing effects of the same diet on 
different tumour types illustrates that 
caution is needed in extrapolating these 
studies in animals to provide dietary 
recommendations for cancer patients, 
particularly without a clear understanding 
of what mechanistically drives these 
differences in tumour response.

Some of the variability in response 
to diet may be explained by technical 
experimental differences in study design, 
such as differences across studies in diet 
formulation, the composition of the 
comparator control diet, the timing or 
method of diet administration and the 
types of animal cancer models being 
tested (see BOX 2 for a discussion of these 
experimental considerations). It is also 
probable that dietary effects on tumour 
growth are context dependent, since 
certain properties of a tumour can affect 
whether it is sensitive to a particular diet. 
Variation in experimental approaches across 
different studies can make it difficult to 
uncover these factors, and well- controlled, 
systematic evaluations of a given diet across 
multiple tumour types within the same 
study may be best suited to define tumour 
characteristics that may dictate responses 
to diet. These factors could include tumour 
genotype, tissue of origin or location of 
the tumour.

Several studies have demonstrated that 
cancer- promoting genetic alterations in 
oncogenes or tumour suppressor genes 
can predict tumour responses to various 
diets. Cancer cell lines with mutations in 
the PI3K signalling pathway are resistant 
to the growth inhibitory effects of caloric 
restriction, and genetically engineering 
an activating PI3K pathway mutation 

into cancer cell lines can be sufficient to 
confer resistance to caloric restriction19,29. 
Genotype can also contribute to tumour 
response to the ketogenic diet; for example, 
the ketogenic diet enhances the growth of 
BRAFV600E melanoma. The ketogenic diet, 
which restricts both carbohydrates and 
protein to limit access to glucogenic amino 
acids, leads to ketogenesis primarily in the 
liver that converts fatty acids into ketone 
bodies such as β- hydroxybutyrate and 
acetoacetate, and acetoacetate augments 
BRAF signalling59,60. Finally, while the serine 
and glycine- free diet is effective in increasing 
survival in a mouse model of Eµ- Myc-driven 
lymphoma and a model of intestinal cancer 
driven by Apc loss, it does not inhibit the 
growth of Kras- mutant pancreatic and 
colorectal tumours10.

The cancer cell tissue of origin and/or 
tumour location may also contribute  

to tumour responses to diet. It is difficult, 
however, to draw strong conclusions about 
which cancer types respond best to a given 
diet, since observations are typically spread 
across different studies rather than being 
contained within a single well- controlled 
experiment. To illustrate this, use of the 
ketogenic diet for brain cancers appears 
to be the most promising, although the 
evidence in support of this diet slowing 
glioma growth is spread out across different 
experimental brain cancer models. A few 
studies demonstrated that the ketogenic 
diet alone can inhibit tumour growth and 
extend survival in various mouse models 
of glioma and glioblastoma52–54,61,62, while 
others show no effect in these models63–65. 
The ketogenic diet can also inhibit tumour 
growth in some other cancer types, such as 
prostate cancer55,56, pancreatic cancer66 and 
gastric cancer57, although the effect size is 
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Fig. 2 | Different diets can be defined by the relative contributions of different macronutrients 
to caloric intake. Diets are composed of three macronutrient categories — carbohydrates, fat and 
protein — that each contributes to caloric intake. Diets also contain components that do not contri-
bute to caloric intake (not shown), such as vitamins, minerals and fibres (BOX 1). Altering the relative 
ratios by which these different macronutrients contribute to caloric intake results in different diets, 
such as caloric restriction, the ketogenic diet and the high- fat diet, which each have distinct effects 
on systemic metabolism and whole- body physiology. Caloric restriction can involve the long- term 
restriction of any combination of macronutrients, but is typically achieved through the restriction of 
carbohydrates while maintaining equal feeding of protein, fat, vitamins and minerals to induce lower 
blood glucose and insulin levels. The degree of restriction differs across studies, but a commonly used 
regimen involves a 30–40% restriction in total calories relative to the control. Both the ketogenic diet 
and the high- fat diet are high in fat, with the key distinction being that the high- fat diet still involves 
substantial carbohydrate consumption, resulting in different physiological effects. Amino acid- defined 
diets involve replacing the protein component with purified mixtures of amino acids, allowing the 
removal of specific amino acids such as serine, glycine and methionine, which can be done in a way 
that does or does not hold the total amount of nitrogen in the diet constant. The control diet shown 
represents the macronutrient composition of a widely used standard laboratory mouse chow.
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