Silibinin mediated HIF-1 α inhibition restores oxidative phosphorylation in highly glycolytic nasopharyngeal carcinoma

Leïla Sarah Sellam¹, Roberta Zappasodi^{2,3}, Djamel Djennaoui⁴, Wahiba Ouahioune⁵, Chafia Touil Boukoffa¹, Taha Merghoub^{2,3,6,7}, Mehdi Bourouba¹

- Laboratory of Cell and Molecular Biology (LBCM), Team Cytokines and Nitric oxide synthase. Immunity and pathogeny, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Bab-Ezzouar, Algiers, 16311, Algeria.
- Ludwig Collaborative and Swim Across America laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
- Otolaryngology Department, Mustapha Pacha hospital, Algiers, Algeria.
- Central Laboratory for Anatomopathology, Frantz Fanon Hospital, Blida, Algeria
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
- Weill Cornell Medicine, New York, NY 10065, USA.

Abstract

Introduction : Tumor resistance to chemotherapy has been increasingly linked to the installation of a hypoxic phenotype in highly glycolytic tumors. Undifferentiated nasopharyngeal carcinoma (NPC) enhanced aerobic glycolysis, promoted by EBV, has been associated with HIF1- α , LDH-A dysregulation and worse prognosis. Here we investigated the effect of Silibinin (SBN), an emerging antitumor flavonoid, on HIF-1 α associated LDH-A activity in High NPC glycolytic tumors.

Materials /Patients and methods : Primary NPC human biopsies (n = 20) and C666.1 cells (NPC) were

Study design

cultured with silibinin (0-100 μM). Glycolysis was tested using Seahorse XF96 Extracellular Flux Analyzer. HIF-1 α expression was evaluated by Flow cytometry (C666-1) and IHC (primary NPC) biopsies). LDH activity and citrate levels were measured using LDH and citrate colorimetric assay kit, respectively. Lactate levels were evaluated using lactate plus Meter Test strips.

Results : A heat map analysis of LDH-A activity and lactate synthesis derived from patients explants determined that 12 out of 20 analyzed tumors displayed a highly glycolytic phenotype, as indicated by presence of LDH-A^{High}-Lactate^{High} and LDH-A^{High} –Lactate^{Low} profiles. Analysis of the effect of the drug on these tumors, showed that SBN exerted a significant inhibitory effect on the expression and/or release of studied molecules (LDH-A: 53.11%, p = 0.0005; Lactate: 15.41%, p = 0.059). Pearson correlation analysis indicated loss of the link associating LDH-A activity to lactate synthesis in the treated tumor explants compared to untreated controls (r = -0.18, p = 0.57 vs. r = 0.51, p = 0.08). Similar results were obtained with SBN on C666.1 cells. Citrate expression analysis, showed presence of a consistent restoration of OXPHOS at the expense of LDH-A and lactate synthesis in C666-1 cells as demonstrate by a 300% citrate levels increase in presence of SBN. Immunohistological evaluation of HIF-1 α expression showed that SBN induced in average a 42.89% reduction (H-score) in hypoxia factor expression in treated tissues compared to control biopsies (p = 0.07).

Conclusion : Overall, we show that silibinin is a potent inhibitor of HIF-1 α , with a strong capacity to restore oxidative phosphorylation (OXPHOS) at the expense of aerobic glycolysis in highly glycolytic NPC tumors. These results provide new perspective for silibinin use as a promising anticancer molecule to overcome NPC resistance to chemotherapy.

Keywords: NPC; LDH-A, OXPHOS; Hypoxia ; Silibinin.

Results

1:1

HOL

Fig. 4 Silibinin presence deteriorates the link associating LDH-A to activity lactate synthesis in the treated explants tumor compared to untreated controls (r = -0.18, p = 0.57 vs. r = 0.51, p = 0.08). Similar results were obtained with SBN on C666.1 cells

Discussion and conclusion

Here we show that silibinin affects NPC tumor cell glycolytic metabolism by interfering with HIF1 α signaling and LDH-A activity. A reduction of lactate production has been observed and citrate production has been recovered in highly glycolytic tumors indicating a metabolic rewiring in the treated tumors.

Overall, we show that silibinin is a potent inhibitor of HIF-1 α , with a strong capacity to restore oxidative phosphorylation (OXPHOS) at the expense of aerobic glycolysis in highly glycolytic NPC tumors. These results provide new perspective for silibinin use as a promising anticancer molecule to overcome NPC resistance to chemotherapy.